cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319126 Convex hull primes, that is, prime numbers corresponding to the convex hull of PrimePi, the prime counting function.

This page as a plain text file.
%I A319126 #27 Feb 25 2025 08:59:42
%S A319126 2,3,5,7,13,19,23,31,43,47,73,113,199,283,467,661,887,1129,1327,1627,
%T A319126 2803,3947,4297,5881,6379,7043,9949,10343,13187,15823,18461,24137,
%U A319126 33647,34763,37663,42863,43067,59753,59797,82619,96017,102679,129643,130699,142237
%N A319126 Convex hull primes, that is, prime numbers corresponding to the convex hull of PrimePi, the prime counting function.
%C A319126 "Convex hull of PrimePi" is a short wording for "the upper convex hull of the points {p, PrimePi(p)} for p >= 2".
%H A319126 Wikipedia, <a href="https://en.wikipedia.org/wiki/Convex_hull">Convex hull</a>
%e A319126 Prime 83 is not member because there exist two primes from the convex hull, namely 47 and 113, such that (PrimePi(83) - PrimePi(47))/(83 - 47) < (PrimePi(113) - PrimePi(83))/(113 - 83).
%t A319126 terms = 42;
%t A319126 pMax = 110000;
%t A319126 a[1] = 2;
%t A319126 a[n_] := a[n] = Module[{}, For[slopeMax = 0; p1 = NextPrime[a[n-1]], p1 <= pMax, p1 = NextPrime[p1], slope = (PrimePi[p1] - PrimePi[a[n-1]])/(p1 - a[n-1]); If[slope > slopeMax, slopeMax = slope; p1Max = p1]]; p1Max];
%t A319126 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 42}]
%o A319126 (PARI) lista(nn) = my(c, m, p=2, r, s, t=1); print1(p); for(n=2, nn, c=t; m=0; forprime(q=p+1, oo, c++; if(m<s=(c-t)/(q-p), m=s; r=q); s=(c-t)/(c*(log(c)+log(log(c))-1)-p); if(s>0&&s<m, break)); print1(", ", r); t=primepi(p=r)); \\ _Jinyuan Wang_, Feb 25 2025
%Y A319126 Cf. A000720, A124661, A167844, A246033 (a subsequence).
%K A319126 nonn
%O A319126 1,1
%A A319126 _Jean-François Alcover_, Sep 11 2018
%E A319126 More terms from _Jinyuan Wang_, Feb 25 2025