This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319128 #36 Mar 15 2020 18:02:39 %S A319128 0,-1,1,3,8,13,21,29,40,51,65,79,96,113,133,153,176,199,225,251,280, %T A319128 309,341,373,408,443,481,519,560,601,645,689,736,783,833,883,936,989, %U A319128 1045,1101,1160,1219,1281,1343,1408,1473,1541,1609,1680,1751 %N A319128 Interleave n*(3*n - 2), 3*n^2 + n - 1, n=0,0,1,1, ... . %C A319128 A144391(n) = -1, 3, 13, 29, 51, ... is in the hexagonal spiral begining with -1 (like from 0 in A000567): %C A319128 . %C A319128 55--54--53--52--51 %C A319128 / \ %C A319128 56 32--31--30--29 50 %C A319128 / / \ \ %C A319128 57 33 15--14--13 28 49 %C A319128 / / / \ \ \ %C A319128 58 34 16 4---3 12 27 48 %C A319128 / / / / \ \ \ \ %C A319128 59 35 17 5 -1 2 11 26 47 %C A319128 / / / / / / / / %C A319128 36 18 6 0---1 10 25 46 %C A319128 \ \ \ / / / %C A319128 37 19 7---8---9 24 45 %C A319128 \ \ / / %C A319128 38 20--21--22--23 44 %C A319128 \ / %C A319128 39--40--41--42--43 %C A319128 . %C A319128 A000567(n) = 0, 1, 8, 21, 40, ... is in the first hexagonal spiral. %C A319128 The bisections 0, 1, 8, 21, ... and -1, 3, 13, 29, ... are on the respective main antidiagonals. %C A319128 a(-n) = 0, 1, 5, 9, 16, 23, ... . The bisections n*(3*n + 2) and 3*n^2 - n - 1 are in both spirals on main diagonals. %C A319128 The bisections of a(n) are in the second spiral: ... 29, 13, 3, -1, 0, 1, 8, 21, ... . %C A319128 The bisections of a(-n) are in the first and in the second spiral: ... 33, 16, 5, 0, 1, 9, 23, ... . %H A319128 Colin Barker, <a href="/A319128/b319128.txt">Table of n, a(n) for n = 0..1000</a> %H A319128 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A319128 a(n+1) = a(n) + (6*n^2 - 3*(-1)^n - 1)/4, n=0,1,2, ... , a(0) = 0. %F A319128 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>3. %F A319128 From _Colin Barker_, Sep 14 2018: (Start) %F A319128 G.f.: -x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)). %F A319128 a(n) = (-4*n + 3*n^2) / 4 for n even. %F A319128 a(n) = (-3 - 4*n + 3*n^2) / 4 for n odd. %F A319128 (End) %F A319128 a(n) = (-3 + 3*(-1)^n - 8*n + 6*n^2)/8. - _Colin Barker_, Sep 14 2018 %F A319128 E.g.f.: (x*(3*x - 1)*cosh(x) + (3*x^2 - x - 3)*sinh(x))/4. - _Stefano Spezia_, Mar 15 2020 %p A319128 seq(op([3*n^2-2*n,3*n^2+n-1]),n=0..30); # _Muniru A Asiru_, Sep 19 2018 %t A319128 LinearRecurrence[{2, 0, -2, 1}, {0, -1, 1, 3 }, 40] (* _Stefano Spezia_, Sep 16 2018 *) %o A319128 (PARI) concat(0, Vec(-x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ _Colin Barker_, Sep 14 2018 %o A319128 (GAP) Flat(List([0..30],n->[3*n^2-2*n,3*n^2+n-1])); # _Muniru A Asiru_, Sep 19 2018 %Y A319128 Main diagonal of A318958. %Y A319128 Cf. A000567, A144391, A168236, A045944, A144390. %K A319128 sign,easy %O A319128 0,4 %A A319128 _Paul Curtz_, Sep 11 2018