This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319129 #45 Sep 09 2019 04:33:15 %S A319129 2,2,9,6,6,3,0,2,6,2,8,8,6,5,3,8,2,4,5,7,0,4,9,4,1,9,1,7,7,3,6,1,7,0, %T A319129 2,7,1,2,2,2,6,0,6,8,5,2,5,8,2,8,4,2,6,8,9,1,2,1,8,8,0,0,0,0,8,0,4,9, %U A319129 2,9,9,2,2,4,5,0,3,4,8,9,8,1 %N A319129 Decimal expansion of (1 + sqrt(3) + sqrt(2*sqrt(3)))/2. %C A319129 This constant and its reciprocal are the real solutions of x^4 - 2*x^3 - 2*x + 1 = (x^2 - (sqrt(3)+1)*x + 1)*(x^2 + (sqrt(3)-1)*x + 1) = 0. %C A319129 Decimal expansion of the largest x satisfying x^2 - (1 + sqrt(3))*x + 1 = 0. %H A319129 A.H.M. Smeets, <a href="/A319129/b319129.txt">Table of n, a(n) for n = 0..20000</a> %e A319129 2.29663026288653824570494191773617027122260685258284268912188000080492992... %p A319129 Digits:=100: evalf((1+sqrt(3)+sqrt(2*sqrt(3)))/2); # _Muniru A Asiru_, Sep 12 2018 %t A319129 RealDigits[(1 + Sqrt[3] + Sqrt[2 Sqrt[3]])/2, 10, 100][[1]] (* _Bruno Berselli_, Sep 13 2018 *) %o A319129 (PARI) (1+sqrt(3)+sqrt(2*sqrt(3)))/2 \\ _Altug Alkan_, Sep 11 2018 %Y A319129 Cf. A318605. %K A319129 nonn,cons %O A319129 0,1 %A A319129 _A.H.M. Smeets_, Sep 11 2018