cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319138 Number of complete strict planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 4, 1, 2, 2, 0, 1, 4, 1, 4, 2, 2, 1, 8, 0, 2, 0, 4, 1, 18, 1, 0, 2, 2, 2, 28, 1, 2, 2, 8, 1, 18, 1, 4, 4, 2, 1, 16, 0, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 84, 1, 2, 4, 0, 2, 18, 1, 4, 2, 18, 1, 112, 1, 2, 4, 4, 2, 18, 1, 16, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A strict planar branching factorization of n is either the number n itself or a sequence of at least two strict planar branching factorizations, one of each factor in a strict ordered factorization of n. A strict planar branching factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 4 trees: (2*(2*3)), (2*(3*2)), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    sotfs[n_]:=Prepend[Join@@Table[Tuples[sotfs/@f],{f,Select[ordfacs[n],And[Length[#]>1,UnsameQ@@#]&]}],n];
    Table[Length[Select[sotfs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A000007(n - 1).
a(product of n distinct primes) = A032037(n).