This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319141 #23 Sep 14 2018 03:18:35 %S A319141 211,223,271,283,433,463,691,823,859,2017,2029,2251,2269,2293,2341, %T A319141 2347,2593,2647,2833,2851,2857,2887,4153,4327,4507,4513,4903,6091, %U A319141 6361,6421,6481,6529,6871,6949,8011,8059,8161,8209,8287,8419,8467,8707,8803,8929,8971 %N A319141 Prime numbers p such that p squared + p reversed is also prime. %C A319141 All terms == 1 (mod 6). - _Robert Israel_, Sep 13 2018 %H A319141 Robert Israel, <a href="/A319141/b319141.txt">Table of n, a(n) for n = 1..10000</a> %e A319141 271 belongs to this sequence as 271 squared is 73441 and 271 reversed is 172 and the sum of 73441 and 172 is 73613, which is prime. %p A319141 revdigs:= proc(n) local L,i; %p A319141 L:= convert(n,base,10); %p A319141 add(L[-i]*10^(i-1),i=1..nops(L)); %p A319141 end proc: %p A319141 filter:= t -> isprime(t) and isprime(t^2+revdigs(t)): %p A319141 select(filter, [seq(t,t=1..10^4,6)]); # _Robert Israel_, Sep 13 2018 %t A319141 Select[Prime@Range@1120, PrimeQ[#^2 + FromDigits[Reverse@IntegerDigits@#]] &] (* _Vincenzo Librandi_, Sep 14 2018 *) %o A319141 (Python) %o A319141 nmax=10000 %o A319141 def is_prime(num): %o A319141 if num == 0 or num == 1: return(0) %o A319141 for k in range(2, num): %o A319141 if (num % k) == 0: %o A319141 return(0) %o A319141 return(1) %o A319141 ris = "" %o A319141 for i in range(nmax): %o A319141 if is_prime(i): %o A319141 r=int((str(i)[::-1])) %o A319141 t=pow(i,2)+r %o A319141 if is_prime(t): %o A319141 ris = ris+str(i)+"," %o A319141 print(ris) %o A319141 (PARI) forprime(p=1, 9000, if(ispseudoprime(p^2 + eval(concat(Vecrev(Str(p))))), print1(p, ", "))) \\ _Felix Fröhlich_, Sep 12 2018 %Y A319141 Cf. A304390. %K A319141 nonn,base,look %O A319141 1,1 %A A319141 _Pierandrea Formusa_, Sep 11 2018