cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319155 Number of bicolored graphs on 2n unlabeled nodes without isolated nodes and which are invariant when the two color classes are interchanged.

This page as a plain text file.
%I A319155 #23 May 06 2025 11:14:36
%S A319155 1,1,3,11,51,337,3500,60936,1866002,102768062,10296340496,
%T A319155 1890236147880,639528747831552,400813006079742544,
%U A319155 467517947968588109568,1019290779610824185400096,4170141472168738281510957264,32130367702064742239376997422512
%N A319155 Number of bicolored graphs on 2n unlabeled nodes without isolated nodes and which are invariant when the two color classes are interchanged.
%H A319155 Andrew Howroyd, <a href="/A319155/b319155.txt">Table of n, a(n) for n = 0..50</a>
%F A319155 a(n) = A122082(n) - A122082(n-1).
%t A319155 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t A319155 edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2];
%t A319155 A122082[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
%t A319155 a[n_] := A122082[n] - A122082[n-1];
%t A319155 a /@ Range[0, 17] (* _Jean-François Alcover_, Sep 05 2019, after _Andrew Howroyd_ in A122082 *)
%Y A319155 Cf. A007140, A122082.
%K A319155 nonn
%O A319155 0,3
%A A319155 _Andrew Howroyd_, Sep 25 2018