cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319157 Smallest Heinz number of a superperiodic integer partition requiring n steps in the reduction to a multiset of size 1 obtained by repeatedly taking the multiset of multiplicities.

Original entry on oeis.org

2, 3, 9, 441, 11865091329, 284788749974468882877009302517495014698593896453070311184452244729
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is superperiodic if either it consists of a single part equal to 1 or its parts have a common divisor > 1 and its multiset of multiplicities is itself superperiodic. For example, (8,8,6,6,4,4,4,4,2,2,2,2) has multiplicities (4,4,2,2) with multiplicities (2,2) with multiplicities (2) with multiplicities (1). The first four of these partitions are periodic and the last is (1), so (8,8,6,6,4,4,4,4,2,2,2,2) is superperiodic.

Crossrefs

Programs

  • Mathematica
    Function[m,Times@@Prime/@m]/@NestList[Join@@Table[Table[2i,{Reverse[#][[i]]}],{i,Length[#]}]&,{1},4]