cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319166 Number of primitive polynomials of degree n over GF(11).

This page as a plain text file.
%I A319166 #21 Jun 17 2024 15:47:12
%S A319166 4,16,144,960,12880,62208,1087632,7027200,85098816,691398400,
%T A319166 10374307328,49985372160,1061265441600,7064952935040,90426613939200,
%U A319166 708867057254400,11892871258806912,65078340559220736,1287559798913990448,8819554320783360000,111715065087913437696
%N A319166 Number of primitive polynomials of degree n over GF(11).
%H A319166 Seiichi Manyama, <a href="/A319166/b319166.txt">Table of n, a(n) for n = 1..50</a>
%H A319166 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.
%H A319166 Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler%27s_totient_function">Euler's totient function</a>.
%F A319166 a(n) = phi(11^n - 1)/n where phi is A000010.
%t A319166 Array[EulerPhi[11^# - 1]/# &, 25] (* _Paolo Xausa_, Jun 17 2024 *)
%o A319166 (PARI) {a(n) = eulerphi(11^n-1)/n}
%Y A319166 Column k=11 of A369291.
%Y A319166 phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), this sequence (k=11).
%Y A319166 Cf. A000010.
%K A319166 nonn
%O A319166 1,1
%A A319166 _Seiichi Manyama_, Sep 12 2018