This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319169 #33 May 10 2021 21:05:36 %S A319169 1,1,2,2,3,3,4,4,6,6,8,7,11,11,14,15,20,19,26,27,34,35,43,45,59,60,72, %T A319169 77,94,98,118,125,148,158,184,198,233,245,282,308,353,374,428,464,525, %U A319169 566,635,686,779,832,930,1005,1123,1208,1345,1451,1609,1732,1912 %N A319169 Number of integer partitions of n whose parts all have the same number of prime factors, counted with multiplicity. %H A319169 Alois P. Heinz, <a href="/A319169/b319169.txt">Table of n, a(n) for n = 0..2500</a> (first 101 terms from Chai Wah Wu) %e A319169 The a(1) = 1 through a(9) = 6 integer partitions: %e A319169 1 2 3 4 5 6 7 8 9 %e A319169 11 111 22 32 33 52 44 72 %e A319169 1111 11111 222 322 53 333 %e A319169 111111 1111111 332 522 %e A319169 2222 3222 %e A319169 11111111 111111111 %p A319169 b:= proc(n, i, f) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A319169 b(n, i-1, f)+(o-> `if`(f in {0, o}, b(n-i, min(i, n-i), %p A319169 `if`(f=0, o, f)), 0))(numtheory[bigomega](i)))) %p A319169 end: %p A319169 a:= n-> b(n$2, 0): %p A319169 seq(a(n), n=0..75); # _Alois P. Heinz_, Dec 15 2018 %t A319169 Table[Length[Select[IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,30}] %t A319169 (* Second program: *) %t A319169 b[n_, i_, f_] := b[n, i, f] = If[n == 0, 1, If[i < 1, 0, %t A319169 b[n, i-1, f] + Function[o, If[f == 0 || f == o, b[n-i, Min[i, n-i], %t A319169 If[f == 0, o, f]], 0]][PrimeOmega[i]]]]; %t A319169 a[n_] := b[n, n, 0]; %t A319169 a /@ Range[0, 75] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A319169 Cf. A000607, A001222, A003963, A064573, A279787, A305551, A319056, A319066, A319071, A320322, A320324. %K A319169 nonn %O A319169 0,3 %A A319169 _Gus Wiseman_, Oct 10 2018 %E A319169 a(51)-a(58) from _Chai Wah Wu_, Nov 12 2018