cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319174 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k/k!)^n.

This page as a plain text file.
%I A319174 #7 Sep 14 2018 14:29:30
%S A319174 1,1,8,90,1448,29750,747462,22182741,759504720,29468021238,
%T A319174 1277744462870,61232148035531,3213710056592796,183329936018667035,
%U A319174 11294683874759287030,747379761629288205795,52864744954736491460768,3980505280416276751035270,317877846102688099315299678
%N A319174 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k/k!)^n.
%F A319174 a(n) = n! * [x^n] exp(n*Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)).
%t A319174 Table[n! SeriesCoefficient[Product[1/(1 - x^k/k!)^n, {k, 1, n}], {x, 0, n}], {n, 0, 18}]
%t A319174 Table[n! SeriesCoefficient[Exp[n Sum[Sum[x^(j k)/(k (j!)^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 18}]
%Y A319174 Cf. A005651, A174661, A319175, A319176.
%K A319174 nonn
%O A319174 0,3
%A A319174 _Ilya Gutkovskiy_, Sep 12 2018