cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319177 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k/k)^n.

This page as a plain text file.
%I A319177 #6 Sep 14 2018 14:29:10
%S A319177 1,1,4,39,500,7990,156684,3640392,97543088,2960758800,100428661440,
%T A319177 3764849536800,154567280328768,6897265807262064,332386213584653760,
%U A319177 17204016957686536320,951852354201532742400,56059949872552858763520,3501729575599545174352896,231227806715994322631352960
%N A319177 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k/k)^n.
%F A319177 a(n) = n! * [x^n] exp(n*Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*j^k)).
%t A319177 Table[n! SeriesCoefficient[Product[(1 + x^k/k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 19}]
%t A319177 Table[n! SeriesCoefficient[Exp[n Sum[Sum[(-1)^(k + 1) x^(j k)/(k j^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 19}]
%Y A319177 Cf. A007838, A181541, A300187, A319175, A319176.
%K A319177 nonn
%O A319177 0,3
%A A319177 _Ilya Gutkovskiy_, Sep 12 2018