A319182 Irregular triangle where T(n,k) is the number of set partitions of {1,...,n} with block-sizes given by the integer partition with Heinz number A215366(n,k).
1, 1, 1, 1, 3, 1, 1, 3, 4, 6, 1, 1, 5, 10, 15, 10, 10, 1, 1, 15, 6, 10, 15, 15, 60, 45, 20, 15, 1, 1, 7, 21, 35, 105, 21, 105, 70, 105, 35, 210, 105, 35, 21, 1, 1, 8, 28, 35, 28, 56, 210, 168, 280, 280, 105, 420, 56, 840, 280, 420, 70, 560, 210, 56, 28, 1, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 3 1 1 3 4 6 1 1 5 10 15 10 10 1 1 15 6 10 15 15 60 45 20 15 1 The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
Links
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]],{n,7}]
Comments