This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319187 #75 Oct 19 2024 15:57:32 %S A319187 1,1,1,2,2,2,2,3,6,6,6,6,6,6,6,8,8,8,8,8,8,8,8,8,16,16,24,24,24,24,24, %T A319187 30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,60,60,60,60,60,60, %U A319187 60,60,60,60,60,60,60,60,60,72,72,72,72,72,72,72,72 %N A319187 Number of pairwise coprime subsets of {1,...,n} of maximum cardinality (A036234). %C A319187 Two or more numbers are pairwise coprime if no pair of them has a common divisor > 1. A single number is not considered to be pairwise coprime unless it is equal to 1. %H A319187 Ana Rechtman, <a href="http://images-archive.math.cnrs.fr/Decembre-2020-4e-defi.html">Décembre 2020, 4e défi</a> (in French), Images des Mathématiques, CNRS, 2020. %F A319187 a(n) = Product_{p prime <= n} floor(log_p(n)). %F A319187 a(n) = A000005(A045948(n)). - _Ridouane Oudra_, Sep 02 2019 %e A319187 The a(8) = 3 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,7,8}. %t A319187 Table[Length[Select[Subsets[Range[n],{PrimePi[n]+1}],CoprimeQ@@#&]],{n,24}] (* see A186974 for a faster program *) %o A319187 (PARI) a(n) = prod(p=1, n, if (isprime(p), logint(n, p), 1)); \\ _Michel Marcus_, Dec 26 2020 %Y A319187 Rightmost terms of A186974 and A320436. %Y A319187 Run lengths are A053707. %Y A319187 Cf. A015614, A036234, A051424, A085945, A186971, A186972, A186994, A276187, A303139, A320423, A320426. %Y A319187 Cf. A000005, A045948. %K A319187 nonn %O A319187 1,4 %A A319187 _Gus Wiseman_, Jan 09 2019