This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319189 #37 Jun 20 2020 08:29:50 %S A319189 1,1,2,3,10,29,3780,5012107 %N A319189 Number of uniform regular hypergraphs spanning n vertices. %C A319189 We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges. %C A319189 Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows. %e A319189 The a(4) = 10 edge-sets: %e A319189 {{1,2,3,4}} %e A319189 {{1,2},{3,4}} %e A319189 {{1,3},{2,4}} %e A319189 {{1,4},{2,3}} %e A319189 {{1},{2},{3},{4}} %e A319189 {{1,2},{1,3},{2,4},{3,4}} %e A319189 {{1,2},{1,4},{2,3},{3,4}} %e A319189 {{1,3},{1,4},{2,3},{2,4}} %e A319189 {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} %e A319189 {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}} %e A319189 Inequivalent representatives of the a(4) = 10 matrices: %e A319189 [1 1 1 1] %e A319189 . %e A319189 [1 1 0 0] [1 0 1 0] [1 0 0 1] %e A319189 [0 0 1 1] [0 1 0 1] [0 1 1 0] %e A319189 . %e A319189 [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0] %e A319189 [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1] %e A319189 [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1] %e A319189 [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1] %e A319189 . %e A319189 [1 1 0 0] %e A319189 [1 0 1 0] %e A319189 [1 0 0 1] %e A319189 [0 1 1 0] %e A319189 [0 1 0 1] %e A319189 [0 0 1 1] %t A319189 Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}] %Y A319189 Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353. %Y A319189 Cf. A002829, A005176, A007016, A049311, A058891, A101370, A110100, A110101, A321717, A321720. %K A319189 nonn,more %O A319189 0,3 %A A319189 _Gus Wiseman_, Dec 17 2018 %E A319189 a(7) from _Jinyuan Wang_, Jun 20 2020