cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319192 Irregular triangle where T(n,k) is the coefficient of p(y) in n! * Sum_{i1 < ... < in} (x_i1 * ... * x_in), where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k).

This page as a plain text file.
%I A319192 #7 Sep 15 2018 15:48:55
%S A319192 1,-1,1,2,-3,1,-6,3,8,-6,1,24,-30,-20,15,20,-10,1,-120,90,144,40,-15,
%T A319192 -90,-120,45,40,-15,1,720,-840,-504,-420,630,504,210,280,-105,-210,
%U A319192 -420,105,70,-21,1,-5040,5760,3360,1260,-3360,2688,-1260,-4032,-3360,-1120
%N A319192 Irregular triangle where T(n,k) is the coefficient of p(y) in n! * Sum_{i1 < ... < in} (x_i1 * ... * x_in), where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k).
%C A319192 A generalization of the triangle of Stirling numbers of the first kind, these are the coefficients appearing in the expansion of single-part augmented elementary symmetric functions in terms of power-sum symmetric functions.
%e A319192 Triangle begins:
%e A319192    1
%e A319192   -1   1
%e A319192    2  -3   1
%e A319192   -6   3   8  -6   1
%e A319192   24 -30 -20  15  20 -10   1
%e A319192 The fourth row corresponds to the symmetric function identity: 24 e(4) = -6 p(4) + 3 p(22) + 8 p(31) - 6 p(211) + p(1111).
%t A319192 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A319192 numPermsOfType[ptn_]:=Total[ptn]!/Times@@ptn/Times@@Factorial/@Length/@Split[ptn];
%t A319192 Table[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*numPermsOfType[primeMS[m]],{n,5},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
%Y A319192 Other row orderings are A036039 and A102189.
%Y A319192 Cf. A000041, A005651, A008277, A008480, A048994, A056239, A124794, A124795, A215366, A318762, A319182, A319191.
%K A319192 sign,tabf
%O A319192 1,4
%A A319192 _Gus Wiseman_, Sep 13 2018