cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319193 Irregular triangle where T(n,k) is the number of permutations of the integer partition with Heinz number A215366(n,k).

This page as a plain text file.
%I A319193 #20 May 10 2021 04:01:47
%S A319193 1,1,1,1,1,2,1,1,1,2,3,1,1,2,2,3,3,4,1,1,2,2,1,1,3,6,6,4,5,1,1,2,2,2,
%T A319193 6,3,3,3,4,4,12,10,5,6,1,1,2,2,1,3,2,3,6,6,3,1,12,4,12,6,10,5,20,15,6,
%U A319193 7,1,1,2,2,2,3,2,6,3,3,4,6,6,1,12,12,4,12
%N A319193 Irregular triangle where T(n,k) is the number of permutations of the integer partition with Heinz number A215366(n,k).
%C A319193 A refinement of Pascal's triangle, these are the unsigned coefficients appearing in the expansion of homogeneous symmetric functions in terms of elementary symmetric functions.
%H A319193 Alois P. Heinz, <a href="/A319193/b319193.txt">Rows n = 0..33, flattened</a>
%F A319193 T(n,k) = A008480(A215366(n,k)).
%e A319193 Triangle begins:
%e A319193   1
%e A319193   1
%e A319193   1  1
%e A319193   1  2  1
%e A319193   1  1  2  3  1
%e A319193   1  2  2  3  3  4  1
%e A319193   1  2  2  1  1  3  6  6  4  5  1
%e A319193 The fourth row corresponds to the symmetric function identity: h(4) = -e(4) + e(22) + 2 e(31) - 3 e(211) + e(1111).
%p A319193 b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], [seq(
%p A319193       map(p-> p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
%p A319193     end:
%p A319193 T:= n-> map(m-> (l-> add(i, i=l)!/mul(i!, i=l))(map(
%p A319193         i-> i[2], ifactors(m)[2])), sort(b(n$2)))[]:
%p A319193 seq(T(n), n=0..10);  # _Alois P. Heinz_, Feb 14 2020
%t A319193 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A319193 Table[Length[Permutations[primeMS[k]]],{n,6},{k,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
%t A319193 (* Second program: *)
%t A319193 b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[ #*Prime[i]^j& /@ b[n - i*j, i - 1], {j, 0, n/i}]]];
%t A319193 T[n_] := Map[Function[m, Function[l, Total[l]!/Times @@ (l!)][ FactorInteger[m][[All, 2]]]], Sort[b[n, n]]];
%t A319193 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *)
%Y A319193 A different row ordering is A072811.
%Y A319193 Cf. A000041, A005651, A008277, A008480, A056239, A124794, A215366, A319182, A319191, A319192.
%K A319193 nonn,look,tabf
%O A319193 0,6
%A A319193 _Gus Wiseman_, Sep 13 2018
%E A319193 T(0,1)=1 prepended by _Alois P. Heinz_, Feb 14 2020