A319195 Irregular triangle with the unique representation of positive integers in the tribonacci ABC-representation.
1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0
Offset: 1
Examples
The complementary and disjoint sequences A, B, C begin, for n >= 0: n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ... A: 1 5 8 12 14 18 21 25 29 32 36 38 42 45 49 52 56 58 62 65 69 73 76 ... B: 0 2 4 6 7 9 11 13 15 17 19 20 22 24 26 28 30 31 33 35 37 39 41 ... C: 3 10 16 23 27 34 40 47 54 60 67 71 78 84 91 97 104 108 115 121 128 135 141 ... --------------------------------------------------------------------------------- The ABC-representation of the positive integers begins: #(1) #(2) #(3) L(n) A316715 A316716 A316717 A316714 n = 1: 10 A(B(0)) = 1 1 1 0 2 n = 2: 010 B(A(B(0))) = 2 2 1 0 3 n = 3: 20 C(B(0)) = 3 1 0 1 2 n = 4: 0010 B(B(A(B(0)))) = 4 3 1 0 4 n = 5: 110 A(A(B(0))) = 5 1 2 0 3 n = 6: 020 B(C(B(0))) = 6 2 0 1 3 n = 7: 00010 B(B(B(A(B(0))))) = 7 4 1 0 5 n = 8: 1010 A(B(A(B(0)))) = 8 2 2 0 4 n = 9: 0110 B(A(A(B(0)))) = 9 2 2 0 4 n = 10: 210 C(A(B(0))) = 10 1 1 1 3 n = 11: 0020 B(B(C(B(0)))) = 11 3 0 1 4 n = 12: 120 A(C(B(0))) = 12 1 1 1 3 n = 13: 000010 B(B(B(B(A(B(0)))))) = 13 5 1 0 6 n = 14: 10010 A(B(B(A(B(0))))) = 14 3 2 0 5 n = 15: 01010 B(A(B(A(B(0))))) = 15 3 2 0 5 n = 16: 2010 C(B(A(B(0)))) = 16 2 1 1 4 n = 17: 00110 B(B(A(A(B(0))))) = 17 3 2 0 5 n = 18: 1110 A(A(A(B(0)))) = 18 1 3 0 4 n = 19: 0210 B(C(A(B(0)))) = 19 2 1 1 4 n = 20: 00020 B(B(B(C(B(0))))) = 20 4 0 1 5 ...
Links
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Comments