A319233 Numbers k such that k^2 + 1 divides 2^k + 4.
0, 1, 8, 28, 32, 128, 2048, 8192, 23948, 131072, 524288, 8388608, 536870912, 2147483648, 137438953472
Offset: 1
Examples
32 = 2^5 is a term since (2^(2^5) + 2^2)/((2^5)^2 + 1) = 2^22 - 2^12 + 2^2.
Programs
-
PARI
isok(n)=Mod(2, n^2+1)^n==-4;
Extensions
a(15) from Hiroaki Yamanouchi, Sep 17 2018
Comments