A319226 Irregular triangle where T(n,k) is the number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the integer partition with Heinz number A215366(n,k).
1, 2, 1, 3, 3, 1, 4, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 3, 2, 6, 12, 9, 6, 6, 1, 7, 7, 7, 7, 14, 7, 7, 7, 7, 7, 21, 14, 7, 7, 1, 8, 8, 8, 4, 8, 8, 8, 16, 16, 8, 2, 24, 8, 24, 12, 16, 8, 32, 20, 8, 8, 1, 9, 9, 9, 9, 9, 9, 18, 9, 9, 9, 18, 18, 3, 27, 27
Offset: 1
Examples
Triangle begins: 1 2 1 3 3 1 4 2 4 4 1 5 5 5 5 5 5 1 6 6 6 3 2 6 12 9 6 6 1 The fourth row corresponds to the symmetric function identities: p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111) p(4) = 4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
Links
- Wikipedia, Expressing power sums in terms of elementary symmetric polynomials
- Gus Wiseman, Enumeration of paths and cycles and e-coefficients of incomparability graphs, arXiv:0709.0430 [math.CO], 2007.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Partition[Range[n],2,1,1],{n-PrimeOmega[m]}],Sort[Length/@csm[Union[#,List/@Range[n]]]]==primeMS[m]&]],{n,6},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
Comments