cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319227 a(n) is the number of twin primes in the Collatz trajectory of n.

This page as a plain text file.
%I A319227 #7 Sep 28 2018 21:33:28
%S A319227 0,0,1,0,0,1,2,0,2,0,1,1,0,2,0,0,0,2,2,0,0,1,0,1,2,0,0,2,1,0,0,0,2,0,
%T A319227 0,2,2,2,2,0,0,0,2,1,0,0,0,1,2,2,1,0,0,0,0,2,2,1,2,0,0,0,0,0,2,2,2,0,
%U A319227 0,0,0,2,1,2,0,2,1,2,2,0,0,0,0,0,0,2,2
%N A319227 a(n) is the number of twin primes in the Collatz trajectory of n.
%C A319227 Conjecture: a(n) <=2.
%C A319227 For a(n) = 2, the corresponding twin primes are (5, 7) and (11, 13) or (11, 13) and (17, 19).
%C A319227 This sequence is generalizable: let a(n, p, p+2q) be the number of pairs of primes of form (p, p+2q) in the Collatz trajectory of n, q = 1, 2,... It is conjectured that a(n, p, p+2q) < =2. (see the table below).
%C A319227 +----------------+---------------------------------+
%C A319227 | pairs of prime |     pairs of prime numbers      |
%C A319227 |     numbers    |    in the Collatz trajectory    |
%C A319227 |                |    when a(n, p, p+2q) = 2       |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+2)    |     (5, 7) and (11, 13)         |
%C A319227 |                |  or (11, 13) and (17, 19)       |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+4)    |     (7, 11) and (13, 17)        |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+6)    |     (41, 47) and (47, 53)       |
%C A319227 |                |  or (47, 53) and (97, 103)      |
%C A319227 |                |  or (47, 53) and (587, 593)     |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+8)    |     (23, 31) and (53, 61)       |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+10)   |     (61, 71) and (73, 83)       |
%C A319227 |                |  or (61, 71) and (283, 293)     |
%C A319227 |                |  or (61, 71) and (577, 587)     |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+12)   |     (71, 83) and (251, 263)     |
%C A319227 |                |  or (251, 263) and (467, 479)   |
%C A319227 |                |  or (251, 263) and (479, 491)   |
%C A319227 |                |  or (251, 263) and (1607, 1619) |
%C A319227 +----------------+---------------------------------+
%C A319227 |    (p, p+14)   |     No results for n <= 10^6    |
%C A319227 +----------------+---------------------------------+
%C A319227 ...................................................
%H A319227 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%e A319227 a(7) = 2 because the Collatz trajectory of 7 is 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 with two twin primes: (5, 7) and (11, 13).
%p A319227 nn:=10^8:
%p A319227 for n from 1 to 100 do:
%p A319227    m:=n:lst:={}:
%p A319227       for i from 1 to nn while(m<>1) do:
%p A319227         if irem(m, 2)=0
%p A319227          then
%p A319227          m:=m/2:
%p A319227          else
%p A319227          lst:=lst union {m}:m:=3*m+1:
%p A319227        fi:
%p A319227      od:
%p A319227      n0:=nops(lst):it:=0:
%p A319227      for j from 1 to n0-1 do:
%p A319227      if isprime(lst[j]) and isprime(lst[j+1]) and lst[j+1]=lst[j]+2
%p A319227      then it:=it+1:else fi:
%p A319227       od:
%p A319227     printf(`%d, `,it):
%p A319227     od:
%Y A319227 Cf. A006370, A070165, A078350, A196871, A280408.
%K A319227 nonn
%O A319227 1,7
%A A319227 _Michel Lagneau_, Sep 14 2018