This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319232 #21 Jun 22 2022 09:35:50 %S A319232 6,3,7,0,5,6,1,8,4,0,7,4,6,7,6,4,3,3,0,5,9,9,6,8,5,8,5,0,4,7,8,5,2,7, %T A319232 6,9,4,5,7,9,8,9,6,0,7,7,1,9,9,5,3,3,6,7,0,9,6,0,1,3,7,1,0,7,5,5,8,8, %U A319232 3,1,6,0,4,3,3,2,7,1,5,1,6,8,3,6,7,5,3,8,3,5,9,6,6,1,3,3,1,8,1,3,1,3,8,2,7,5 %N A319232 Decimal expansion of Sum_{p = prime} 1/(p*log p)^2. %C A319232 Obtained by expanding the formalism of arXiv:0811.4739 to double integrals over the Riemann zeta function. %H A319232 R. J. Mathar, <a href="https://arxiv.org/abs/0811.4739">Twenty digits of some integrals of the prime zeta function</a>, arXiv:0811.4739 (2008-2009). %e A319232 1/A016627^2 + 1/A016650^2 + 1/8.047189^2 + ... = 0.637056184074676.... %t A319232 digits = 106; precision = digits + 10; %t A319232 tmax = 500; (* integrand considered negligible beyond tmax *) %t A319232 kmax = 300; (* f(k) considered negligible beyond kmax *) %t A319232 InLogZeta[k_] := NIntegrate[(t - 2k) Log[Zeta[t]], {t, 2k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision]; %t A319232 f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^3)*InLogZeta[k]]]; %t A319232 s = 0; %t A319232 Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}]; %t A319232 RealDigits[s][[1]][[1 ;; digits]] (* _Jean-François Alcover_, Jun 21 2022, after _Vaclav Kotesovec_ *) %o A319232 (PARI) default(realprecision, 200); s=0; for(k=1, 300, s = s + moebius(k)/k^3 * intnum(x=2*k,[[1], 1], (x-2*k)*log(zeta(x))); print(s)); \\ _Vaclav Kotesovec_, Jun 12 2022 %Y A319232 Cf. A137245, A115563, A221711, A319231. %K A319232 nonn,cons %O A319232 0,1 %A A319232 _R. J. Mathar_, Sep 14 2018 %E A319232 More terms from _Vaclav Kotesovec_, Jun 12 2022