This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319234 #14 Sep 15 2018 03:47:40 %S A319234 1,0,1,-3,0,1,0,-9,0,1,9,0,-18,0,1,0,45,0,-30,0,1,-27,0,135,0,-45,0,1, %T A319234 0,-189,0,315,0,-63,0,1,81,0,-756,0,630,0,-84,0,1,0,729,0,-2268,0, %U A319234 1134,0,-108,0,1,-243,0,3645,0,-5670,0,1890,0,-135,0,1 %N A319234 T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows. %C A319234 The symbol '*' in the name refers to the noncommutative multiplication in Hamilton's division algebra. Traditionally Q(a, b, c, d) is written a + b*i + c*j + d*k. %H A319234 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quaternion">Quaternion</a> %e A319234 The list of polynomials starts 1, x, x^2 - 3, x^3 - 9*x, x^4 - 18*x^2 + 9, ... and the list of coefficients of the polynomials starts: %e A319234 [0] [ 1] %e A319234 [1] [ 0, 1] %e A319234 [2] [ -3, 0, 1] %e A319234 [3] [ 0, -9, 0, 1] %e A319234 [4] [ 9, 0, -18, 0, 1] %e A319234 [5] [ 0, 45, 0, -30, 0, 1] %e A319234 [6] [-27, 0, 135, 0, -45, 0, 1] %e A319234 [7] [ 0, -189, 0, 315, 0, -63, 0, 1] %e A319234 [8] [ 81, 0, -756, 0, 630, 0, -84, 0, 1] %e A319234 [9] [ 0, 729, 0, -2268, 0, 1134, 0, -108, 0, 1] %t A319234 Needs["Quaternions`"] %t A319234 P[x_, 0 ] := Quaternion[1, 0, 0, 0]; %t A319234 P[x_, n_] := P[x, n] = Quaternion[x, 1, 1, 1] ** P[x, n - 1]; %t A319234 Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten %o A319234 (Sage) %o A319234 R.<x> = QQ[] %o A319234 K = R.fraction_field() %o A319234 H.<i, j, k> = QuaternionAlgebra(K, -1, -1) %o A319234 def Q(a, b, c, d): return H(a + b*i + c*j + d*k) %o A319234 @cached_function %o A319234 def P(n): %o A319234 return Q(x, 1, 1, 1)*P(n-1) if n > 0 else Q(1, 0, 0, 0) %o A319234 def p(n): return P(n)[0].numerator().list() %o A319234 flatten([p(n) for n in (0..10)]) # Kudos to William Stein %Y A319234 Inspired by the sister sequence A181738 of _Roger L. Bagula_. %Y A319234 Cf. A254006 (T(n,0) up to sign), A138230 (row sums). %K A319234 sign,tabl %O A319234 0,4 %A A319234 _Peter Luschny_, Sep 14 2018