cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

This page as a plain text file.
%I A319238 #53 Apr 03 2025 01:36:02
%S A319238 6,8,10,14,15,16,21,22,26,27,33,34,35,38,39,46,51,55,57,58,62,64,65,
%T A319238 69,74,77,81,82,85,86,87,91,93,94,95,96,106,111,115,118,119,120,122,
%U A319238 123,125,129,133,134,141,142,143,144,145,146,155,158,159,160,161,166
%N A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).
%C A319238 From _Tian Vlasic_, Jan 01 2022: (Start)
%C A319238 Numbers that have an equal number of even- and odd-length unordered factorizations into distinct factors.
%C A319238 For prime p, by the pentagonal number theorem, p^k is a term if and only if k is in A090864.
%C A319238 For primes p and q, p*q^k is a term if and only if k = A000326(m)+N with 0 <= N < m. (End)
%H A319238 Leonhard Euler, <a href="https://arxiv.org/abs/math/0505373">On the remarkable properties of the pentagonal numbers</a>, arXiv:math/0505373 [math.HO], 2005.
%H A319238 Leonhard Euler, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k6953p/f517">De mirabilibus proprietatibus numerorum pentagonalium</a>, par. 2.
%H A319238 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumberTheorem.html">Pentagonal Number Theorem</a>
%H A319238 Wikipedia, <a href="http://www.wikipedia.org/wiki/Pentagonal number theorem">Pentagonal number theorem</a>
%e A319238 16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2 has an equal number of even-length factorizations and odd-length factorizations into distinct factors (1). - _Tian Vlasic_, Dec 31 2021
%t A319238 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A319238 Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],0]
%Y A319238 Complement of A319237.
%Y A319238 Cf. A001055, A045778, A114592, A162247, A190938, A281116, A281118, A303386, A316441, A319240.
%K A319238 nonn
%O A319238 1,1
%A A319238 _Gus Wiseman_, Sep 15 2018