cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319240 Positions of zeros in A316441, the list of coefficients in the expansion of Product_{n > 1} 1/(1 + 1/n^s).

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Dec 31 2021: (Start)
Numbers that have an equal number of even and odd-length unordered factorizations.
There are infinitely many terms since p^2 is a term for prime p.
Out of all numbers of the form p^k with p prime (listed in A000961), only the numbers of the form p^2 (A001248) are terms.
Out of all numbers of the form p*q^k, p and q prime, only the numbers of the form p*q (A006881), p*q^2 (A054753), p*q^4 (A178739) and p*q^6 (A189987) are terms.
Similar methods can be applied to all prime signatures. (End)

Examples

			12 = 2*6 = 3*4 = 2*2*3 has an equal number of even-length factorizations and odd-length factorizations (2). - _Tian Vlasic_, Dec 09 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,100}],0]