This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319258 #14 Sep 17 2018 08:32:32 %S A319258 1,3,7,11,16,41,48,56,120,130,141,262,275,289,485,501,518,807,826,846, %T A319258 1246,1268,1291,1820,1845,1871,2547,2575,2604,3445,3476,3508,4532, %U A319258 4566,4601,5826,5863,5901,7345,7385,7426,9107,9150,9194,11130,11176,11223 %N A319258 a(n) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + ... + (up to n). %H A319258 Colin Barker, <a href="/A319258/b319258.txt">Table of n, a(n) for n = 1..1000</a> %H A319258 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-3,0,-3,3,0,1,-1). %F A319258 a(n) = n*(1 + floor((n-2)/3) - floor(n/3)) + 3*floor(n/3)^2*(1 + floor(n/3)) + floor((n+2)/3)*(3*floor((n+2)/3) - 1)/2. %F A319258 From _Colin Barker_, Sep 16 2018: (Start) %F A319258 G.f.: x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3). %F A319258 a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10) for n>10. %F A319258 (End) %e A319258 a(1) = 1; %e A319258 a(2) = 1 + 2 = 3; %e A319258 a(3) = 1 + 2*3 = 7; %e A319258 a(4) = 1 + 2*3 + 4 = 11; %e A319258 a(5) = 1 + 2*3 + 4 + 5 = 16; %e A319258 a(6) = 1 + 2*3 + 4 + 5*6 = 41; %e A319258 a(7) = 1 + 2*3 + 4 + 5*6 + 7 = 48; %e A319258 a(8) = 1 + 2*3 + 4 + 5*6 + 7 + 8 = 56; %e A319258 a(9) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 = 120; %e A319258 a(10) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 = 130; %e A319258 a(11) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11 = 141; %e A319258 a(12) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 = 262; etc. %t A319258 Table[n (1 + Floor[(n - 2)/3] - Floor[n/3]) + 3 Floor[n/3]^2 (1 + Floor[n/3]) + Floor[(n + 2)/3] (3 Floor[(n + 2)/3] - 1)/2, {n, 50}] %o A319258 (PARI) Vec(x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ _Colin Barker_, Sep 16 2018 %Y A319258 Cf. A093361, A228958, A305189, A319014. %K A319258 nonn,easy %O A319258 1,2 %A A319258 _Wesley Ivan Hurt_, Sep 16 2018