This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319270 #7 Sep 17 2018 08:34:05 %S A319270 1,2,6,12,18,24,26,48,52,54,72,74,78,96,104,108,122,148,156,162,178, %T A319270 192,202,208,222,234,244,288,296,312,338,356,366,384,404,416,432,444, %U A319270 446,468,478,486,488,502,534,592,606,624,648,666,702,712,718,732,746 %N A319270 Numbers that are 1 or whose prime indices are relatively prime and belong to the sequence, and whose prime multiplicities are also relatively prime. %C A319270 Also Matula-Goebel numbers of series-reduced locally non-intersecting aperiodic rooted trees. %e A319270 The sequence of Matula-Goebel trees of elements of this sequence begins: %e A319270 1: o %e A319270 2: (o) %e A319270 6: (o(o)) %e A319270 12: (oo(o)) %e A319270 18: (o(o)(o)) %e A319270 24: (ooo(o)) %e A319270 26: (o(o(o))) %e A319270 48: (oooo(o)) %e A319270 52: (oo(o(o))) %e A319270 54: (o(o)(o)(o)) %e A319270 72: (ooo(o)(o)) %e A319270 74: (o(oo(o))) %e A319270 78: (o(o)(o(o))) %e A319270 96: (ooooo(o)) %t A319270 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A319270 ain[n_]:=Or[n==1,And[GCD@@primeMS[n]==1,GCD@@Length/@Split[primeMS[n]]==1,And@@ain/@primeMS[n]]]; %t A319270 Select[Range[100],ain] %Y A319270 Cf. A000081, A007097, A061775, A276625, A298748, A301700, A303431, A316470, A319271. %K A319270 nonn %O A319270 1,2 %A A319270 _Gus Wiseman_, Sep 16 2018