cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319272 Numbers whose prime multiplicities are distinct and whose prime indices are term of the sequence.

This page as a plain text file.
%I A319272 #12 May 08 2021 08:28:55
%S A319272 1,2,3,4,5,7,8,9,11,12,16,17,18,19,20,23,24,25,27,28,31,32,37,40,44,
%T A319272 45,48,49,50,53,54,56,59,61,63,64,67,68,71,72,75,76,80,81,83,88,89,92,
%U A319272 96,97,98,99,103,107,108,112,121,124,125,127,128,131,135,136,144,147,148
%N A319272 Numbers whose prime multiplicities are distinct and whose prime indices are term of the sequence.
%C A319272 A prime index of n is a number m such that prime(m) divides n.
%C A319272 Also Matula-Goebel numbers of rooted trees in which the multiplicities in the multiset of branches directly under any given node are distinct.
%H A319272 Andrew Howroyd, <a href="/A319272/b319272.txt">Table of n, a(n) for n = 1..1000</a>
%e A319272 36 is not in the sequence because 36 = 2^2 * 3^2 does not have distinct prime multiplicities.
%e A319272 The sequence of terms of the sequence followed by their Matula-Goebel trees begins:
%e A319272    1: o
%e A319272    2: (o)
%e A319272    3: ((o))
%e A319272    4: (oo)
%e A319272    5: (((o)))
%e A319272    7: ((oo))
%e A319272    8: (ooo)
%e A319272    9: ((o)(o))
%e A319272   11: ((((o))))
%e A319272   12: (oo(o))
%e A319272   16: (oooo)
%e A319272   17: (((oo)))
%e A319272   18: (o(o)(o))
%e A319272   19: ((ooo))
%e A319272   20: (oo((o)))
%e A319272   23: (((o)(o)))
%e A319272   24: (ooo(o))
%e A319272   25: (((o))((o)))
%e A319272   27: ((o)(o)(o))
%e A319272   28: (oo(oo))
%e A319272   31: (((((o)))))
%t A319272 mgsiQ[n_]:=Or[n==1,And[UnsameQ@@Last/@FactorInteger[n],And@@Cases[FactorInteger[n],{p_,_}:>mgsiQ[PrimePi[p]]]]];
%t A319272 Select[Range[100],mgsiQ]
%o A319272 (PARI) is(n)={my(f=factor(n)); if(#Set(f[,2])<#f~, 0, for(i=1, #f~, if(!is(primepi(f[i,1])), return(0))); 1)}
%o A319272 { select(is, [1..200]) } \\ _Andrew Howroyd_, Mar 01 2020
%Y A319272 Cf. A000081, A004111, A007097, A061775, A098859, A130091, A255231, A276625, A316793, A316794, A316795, A316796.
%K A319272 nonn
%O A319272 1,2
%A A319272 _Gus Wiseman_, Sep 16 2018
%E A319272 Terms a(53) and beyond from _Andrew Howroyd_, Mar 01 2020