This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319272 #12 May 08 2021 08:28:55 %S A319272 1,2,3,4,5,7,8,9,11,12,16,17,18,19,20,23,24,25,27,28,31,32,37,40,44, %T A319272 45,48,49,50,53,54,56,59,61,63,64,67,68,71,72,75,76,80,81,83,88,89,92, %U A319272 96,97,98,99,103,107,108,112,121,124,125,127,128,131,135,136,144,147,148 %N A319272 Numbers whose prime multiplicities are distinct and whose prime indices are term of the sequence. %C A319272 A prime index of n is a number m such that prime(m) divides n. %C A319272 Also Matula-Goebel numbers of rooted trees in which the multiplicities in the multiset of branches directly under any given node are distinct. %H A319272 Andrew Howroyd, <a href="/A319272/b319272.txt">Table of n, a(n) for n = 1..1000</a> %e A319272 36 is not in the sequence because 36 = 2^2 * 3^2 does not have distinct prime multiplicities. %e A319272 The sequence of terms of the sequence followed by their Matula-Goebel trees begins: %e A319272 1: o %e A319272 2: (o) %e A319272 3: ((o)) %e A319272 4: (oo) %e A319272 5: (((o))) %e A319272 7: ((oo)) %e A319272 8: (ooo) %e A319272 9: ((o)(o)) %e A319272 11: ((((o)))) %e A319272 12: (oo(o)) %e A319272 16: (oooo) %e A319272 17: (((oo))) %e A319272 18: (o(o)(o)) %e A319272 19: ((ooo)) %e A319272 20: (oo((o))) %e A319272 23: (((o)(o))) %e A319272 24: (ooo(o)) %e A319272 25: (((o))((o))) %e A319272 27: ((o)(o)(o)) %e A319272 28: (oo(oo)) %e A319272 31: (((((o))))) %t A319272 mgsiQ[n_]:=Or[n==1,And[UnsameQ@@Last/@FactorInteger[n],And@@Cases[FactorInteger[n],{p_,_}:>mgsiQ[PrimePi[p]]]]]; %t A319272 Select[Range[100],mgsiQ] %o A319272 (PARI) is(n)={my(f=factor(n)); if(#Set(f[,2])<#f~, 0, for(i=1, #f~, if(!is(primepi(f[i,1])), return(0))); 1)} %o A319272 { select(is, [1..200]) } \\ _Andrew Howroyd_, Mar 01 2020 %Y A319272 Cf. A000081, A004111, A007097, A061775, A098859, A130091, A255231, A276625, A316793, A316794, A316795, A316796. %K A319272 nonn %O A319272 1,2 %A A319272 _Gus Wiseman_, Sep 16 2018 %E A319272 Terms a(53) and beyond from _Andrew Howroyd_, Mar 01 2020