This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319274 #25 Nov 12 2024 18:59:41 %S A319274 132,264,396,8991,10545,35964,255530,1559844,9299907,47755078, %T A319274 89599104,167264994,283797162,473995260,3929996070,6379993620, %U A319274 10009998999,11111111110,22222222220,33333333330,44444444440,55555555550,66666666660,77777777770,88888888880,99999999990 %N A319274 Osiris or Digit re-assembly numbers: numbers that are equal to the sum of permutations of subsamples of their own digits. %C A319274 This sequence differs from A241754 because this sequence uses permutations only once. %C A319274 Permutations are of the same length k, leading zeros are allowed. %C A319274 The k's in the sequence are: 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 7, 7, 8, 7, 9, 9. %H A319274 Giovanni Resta, <a href="/A319274/b319274.txt">Table of n, a(n) for n = 1..33</a> (terms < 10^16) %e A319274 10545 = 014 + 015 + 041 + 045 + 051 + 054 + 055 + 104 + 105 + 140 + 145 + 150 + 154 + 155 + 401 + 405 + 410 + 415 + 450 + 451 + 455 + 501 + 504 + 505 + 510 + 514 + 515 + 540 + 541 + 545 + 550 + 551 + 554. %o A319274 (Python) %o A319274 import itertools %o A319274 def getData(a, b): %o A319274 dig = (itertools.permutations(str(a), b)) %o A319274 for d in dig: %o A319274 yield d %o A319274 for w in range(2, 6): %o A319274 kk=int(w*'1') %o A319274 for i in range (kk, 10**(w+3), kk): %o A319274 m=[] %o A319274 get = getData(i, w) %o A319274 while True: %o A319274 try: %o A319274 n = next(get) %o A319274 ee=int("".join((n))) %o A319274 if ee not in m: %o A319274 m.append(ee) %o A319274 except StopIteration: %o A319274 if sum (m)==i and len(m)>1: %o A319274 m.sort() %o A319274 print (sum(m), len(m), m, i) %o A319274 break %Y A319274 Cf. A047726, A179239, A241754, A241899. %K A319274 base,nonn %O A319274 1,1 %A A319274 _Pieter Post_, Sep 16 2018 %E A319274 a(12)-a(26) from _Giovanni Resta_, Sep 16 2018