A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.
1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1
Examples
The array starts in row n=1 with columns k>=1 as: 1 1 1 1 1 1 1 1 3 5 9 17 33 65 129 257 4 10 28 82 244 730 2188 6562 7 21 73 273 1057 4161 16513 65793 6 26 126 626 3126 15626 78126 390626 12 50 252 1394 8052 47450 282252 1686434 8 50 344 2402 16808 117650 823544 5764802 15 85 585 4369 33825 266305 2113665 16843009
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSigma[k, n]; Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)
Formula
sigma_k(n) = sum_{d|n} d^k.
Comments