cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1

Views

Author

R. J. Mathar, Sep 16 2018

Keywords

Comments

Equals the square array A082771 without its first column.

Examples

			The array starts in row n=1 with columns k>=1 as:
     1      1      1      1      1      1       1        1
     3      5      9     17     33     65     129      257
     4     10     28     82    244    730    2188     6562
     7     21     73    273   1057   4161   16513    65793
     6     26    126    626   3126  15626   78126   390626
    12     50    252   1394   8052  47450  282252  1686434
     8     50    344   2402  16808 117650  823544  5764802
    15     85    585   4369  33825 266305 2113665 16843009
		

Crossrefs

Cf. A082771, A023887 (diagonal), A109974, A319194 (partial column sums).

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)

Formula

sigma_k(n) = sum_{d|n} d^k.