This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319281 #18 Feb 18 2025 08:59:10 %S A319281 1,16,17,33,49,65,81,97,113,129,145,161,177,193,209,225,241,256,257, %T A319281 272,273,289,305,321,337,353,369,385,401,417,433,449,465,481,497,513, %U A319281 528,529,545,561,577,593,609,625,641,657,673,689,705,721,737,753,769,784 %N A319281 Numbers of the form 16^i*(16*j + 1). %C A319281 {a(n)} gives all positive fourth powers modulo all powers of 2, that is, positive fourth powers over 2-adic integers. So this sequence is closed under multiplication. %H A319281 Jianing Song, <a href="/A319281/b319281.txt">Table of n, a(n) for n = 1..10002</a> (all terms <= 150000) %F A319281 a(n) = 15*n + O(log(n)). %o A319281 (PARI) isA319281(n)= n\16^valuation(n, 16)%16==1 %o A319281 (Python) %o A319281 def A319281(n): %o A319281 if n<3: return 15*n-14 %o A319281 def bisection(f,kmin=0,kmax=1): %o A319281 while f(kmax) > kmax: kmax <<= 1 %o A319281 kmin = kmax >> 1 %o A319281 while kmax-kmin > 1: %o A319281 kmid = kmax+kmin>>1 %o A319281 if f(kmid) <= kmid: %o A319281 kmax = kmid %o A319281 else: %o A319281 kmin = kmid %o A319281 return kmax %o A319281 def f(x): return n-1+x-sum((((x>>(i<<2))-1)>>4)+1 for i in range(x.bit_length()>>2)) %o A319281 return bisection(f,n,n) # _Chai Wah Wu_, Feb 17 2025 %Y A319281 A158057 is a proper subsequence. %Y A319281 Perfect powers over 2-adic integers: %Y A319281 Squares: positive: A234000; negative: A004215 (negated); %Y A319281 Cubes: A191257; %Y A319281 Fourth powers: positive: this sequence; negative: A319282 (negated). %K A319281 nonn %O A319281 1,2 %A A319281 _Jianing Song_, Sep 16 2018