This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319282 #17 Feb 18 2025 08:59:15 %S A319282 15,31,47,63,79,95,111,127,143,159,175,191,207,223,239,240,255,271, %T A319282 287,303,319,335,351,367,383,399,415,431,447,463,479,495,496,511,527, %U A319282 543,559,575,591,607,623,639,655,671,687,703,719,735,751,752,767,783,799,815 %N A319282 Numbers of the form 16^i*(16*j + 15). %C A319282 {-a(n)} gives all negative fourth powers modulo all powers of 2, that is, negative fourth powers over 2-adic integers. %H A319282 Jianing Song, <a href="/A319282/b319282.txt">Table of n, a(n) for n = 1..9999</a> (all terms <= 150000) %F A319282 a(n) = 15*n + O(log(n)). %o A319282 (PARI) isA319282(n)= n\16^valuation(n, 16)%16==15 %o A319282 (Python) %o A319282 def A319282(n): %o A319282 def bisection(f,kmin=0,kmax=1): %o A319282 while f(kmax) > kmax: kmax <<= 1 %o A319282 kmin = kmax >> 1 %o A319282 while kmax-kmin > 1: %o A319282 kmid = kmax+kmin>>1 %o A319282 if f(kmid) <= kmid: %o A319282 kmax = kmid %o A319282 else: %o A319282 kmin = kmid %o A319282 return kmax %o A319282 def f(x): return n+x-sum((((x>>(i<<2))-15)>>4)+1 for i in range(x.bit_length()>>2)) %o A319282 return bisection(f,n,n) # _Chai Wah Wu_, Feb 17 2025 %Y A319282 A125169 is a proper subsequence. %Y A319282 Perfect powers over 2-adic integers: %Y A319282 Squares: positive: A234000; negative: A004215 (negated); %Y A319282 Cubes: A191257; %Y A319282 Fourth powers: positive: A319281; negative: this sequence (negated). %K A319282 nonn %O A319282 1,1 %A A319282 _Jianing Song_, Sep 16 2018