A319284 The profiles of the backtrack tree for the n queens problem, triangle read by rows.
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 14, 12, 10, 1, 6, 20, 36, 46, 40, 4, 1, 7, 30, 76, 140, 164, 94, 40, 1, 8, 42, 140, 344, 568, 550, 312, 92, 1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352, 1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724, 1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680
Offset: 0
Examples
[1] [1, 1] [1, 2, 0] [1, 3, 2, 0] [1, 4, 6, 4, 2] [1, 5, 12, 14, 12, 10] [1, 6, 20, 36, 46, 40, 4] [1, 7, 30, 76, 140, 164, 94, 40] [1, 8, 42, 140, 344, 568, 550, 312, 92] [1, 9, 56, 234, 732, 1614, 2292, 2038, 1066, 352] [1, 10, 72, 364, 1400, 3916, 7552, 9632, 7828, 4040, 724] [1, 11, 90, 536, 2468, 8492, 21362, 37248, 44148, 34774, 15116, 2680] [1, 12, 110, 756, 4080, 16852, 52856, 120104, 195270, 222720, 160964, 68264, 14200]
References
- D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
Links
- Peter Luschny, Rows n = 0..19, flattened
- Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
- V. Kotesovec, Ways of placing non-attacking queens and kings..., part of "Between chessboard and computer", 1996, pp. 204 - 206.
- Peter Luschny, Julia implementation of the n queens problem with profiles
- Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO] 2021.
- Wikipedia, Backtracking
- Wikipedia, Eight queens puzzle
Crossrefs
Programs
-
Julia
# See the link section.
Comments