A319285 Number of series-reduced locally stable rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.
1, 2, 9, 69, 619, 7739, 109855, 1898230
Offset: 1
Examples
The a(3) = 9 trees: (1(11)) (111) (1(12)) (2(11)) (112) (1(23)) (2(13)) (3(12)) (123) Examples of rooted trees that are not locally stable are ((11)(111)), ((11)(112)), ((12)(112)), ((12)(123)).
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],stableQ]]; Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
Comments