This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319291 #5 Sep 17 2018 08:34:47 %S A319291 1,2,12,107,1299,20764,412957,9817743 %N A319291 Number of series-reduced locally disjoint rooted trees with n leaves spanning an initial interval of positive integers. %e A319291 The a(3) = 12 series-reduced locally disjoint rooted trees: %e A319291 (1(11)) %e A319291 (111) %e A319291 (1(22)) %e A319291 (2(12)) %e A319291 (122) %e A319291 (1(12)) %e A319291 (2(11)) %e A319291 (112) %e A319291 (1(23)) %e A319291 (2(13)) %e A319291 (3(12)) %e A319291 (123) %e A319291 The trees counted by A316651(4) but not by a(4): %e A319291 ((11)(12)) %e A319291 ((12)(13)) %e A319291 ((12)(22)) %e A319291 ((12)(23)) %e A319291 ((13)(23)) %t A319291 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A319291 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A319291 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A319291 gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],disjointQ]]; %t A319291 allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A319291 Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}] %Y A319291 Cf. A000081, A007562, A301700, A316473, A316475, A316495, A316651, A316694, A316695, A316696, A316697, A319286. %K A319291 nonn,more %O A319291 1,2 %A A319291 _Gus Wiseman_, Sep 16 2018