cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319312 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

This page as a plain text file.
%I A319312 #7 Sep 18 2018 17:08:08
%S A319312 1,3,7,22,67,242,885,3456,13761,56342,234269,989335,4225341,18231145,
%T A319312 79321931,347676128,1533613723,6803017863,30328303589,135808891308,
%U A319312 610582497919,2755053631909,12472134557093,56630659451541,257841726747551,1176927093597201
%N A319312 Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.
%C A319312 Also the number of orderless tree-factorizations of Heinz numbers of integer partitions of n.
%C A319312 Also the number of phylogenetic trees on a multiset of labels summing to n.
%H A319312 Andrew Howroyd, <a href="/A319312/b319312.txt">Table of n, a(n) for n = 1..200</a>
%e A319312 The a(3) = 7 trees:
%e A319312   (3)    (21)        (111)
%e A319312        ((1)(2))    ((1)(11))
%e A319312                   ((1)(1)(1))
%e A319312                  ((1)((1)(1)))
%t A319312 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A319312 phyfacs[n_]:=Prepend[Join@@Table[Union[Sort/@Tuples[phyfacs/@f]],{f,Select[facs[n],Length[#]>1&]}],n];
%t A319312 Table[Sum[Length[phyfacs[Times@@Prime/@m]],{m,IntegerPartitions[n]}],{n,6}]
%o A319312 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
%o A319312 seq(n)={my(v=[]); for(n=1, n, v=concat(v, numbpart(n) + EulerT(concat(v,[0]))[n])); v} \\ _Andrew Howroyd_, Sep 18 2018
%Y A319312 Cf. A000081, A000311, A000669, A001678, A005804, A141268, A292504, A300660, A316653, A316654, A316656.
%K A319312 nonn
%O A319312 1,2
%A A319312 _Gus Wiseman_, Sep 17 2018
%E A319312 Terms a(14) and beyond from _Andrew Howroyd_, Sep 18 2018