cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A319320 Number of integer partitions of n such that every distinct submultiset has a different LCM.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 12, 15, 17, 20, 22, 24, 25, 31, 35, 39, 40, 48, 51, 55, 64, 73, 77, 85, 92, 104, 115, 126, 136, 147, 157, 176, 198, 211, 234, 246, 269, 294, 326, 350, 375, 403, 443, 475, 526, 560, 600, 650
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

Note that such partitions are necessarily strict.

Examples

			The a(19) = 12 partitions:
  (19),
  (10,9), (11,8), (12,7), (13,6), (14,5), (15,4), (16,3), (17,2),
  (8,6,5), (11,5,3),
  (7,5,4,3).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@LCM@@@Union[Rest[Subsets[#]]]&]],{n,30}]

A319319 Heinz numbers of integer partitions such that every distinct submultiset has a different GCD.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 167, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
First differs from A304713 (Heinz numbers of pairwise indivisible partitions) at A304713(58) = 165, which is absent from this sequence because its prime indices are {2,3,5} and GCD(2,3) = GCD(2,3,5) = 1. The first term with more than two prime factors is 17719, which has prime indices {6,10,15}. The first term with more than two prime factors that is absent from A318716 is 296851, which has prime indices {12,20,30}.

Examples

			The sequence of partitions whose Heinz numbers are in the sequence begins: (), (1), (2), (3), (4), (5), (6), (3,2), (7), (8), (9), (10), (11), (5,2), (4,3), (12), (13), (14), (15), (7,2), (16), (5,3).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@GCD@@@Union[Subsets[primeMS[#]]]&]

A319328 Heinz numbers of integer partitions such that not every distinct submultiset has a different GCD but every distinct submultiset has a different LCM.

Original entry on oeis.org

165, 255, 385, 465, 561, 595, 615, 759, 885, 935, 1001, 1005, 1015, 1023, 1045, 1085, 1173, 1245, 1309, 1353, 1435, 1455, 1505, 1547, 1581, 1615, 1635, 1705, 1771, 1905, 1947, 2065, 2091, 2139, 2211, 2235, 2255, 2345, 2355, 2365, 2387, 2397, 2409, 2431, 2465
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The first term of this sequence absent from A302696 (numbers whose prime indices are pairwise coprime) is 1001 with prime indices {4,5,6}.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins (5,3,2), (7,3,2), (5,4,3), (11,3,2), (7,5,2), (7,4,3), (13,3,2), (9,5,2), (17,3,2), (7,5,3).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],UnsameQ@@primeMS[#]&&And[!UnsameQ@@GCD@@@Union[Rest[Subsets[primeMS[#]]]],UnsameQ@@LCM@@@Union[Rest[Subsets[primeMS[#]]]]]&]
Showing 1-3 of 3 results.