cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319360 Expansion of e.g.f. (1 + x)*exp(log(1 + x)^2/2).

This page as a plain text file.
%I A319360 #6 Jan 09 2019 09:19:31
%S A319360 1,1,1,0,2,-10,64,-476,4038,-38466,406446,-4716624,59621748,
%T A319360 -815339460,11992028112,-188746844040,3165161922492,-56333871521508,
%U A319360 1060525150393308,-21053827255670976,439558554065307288,-9627439778044075512,220722057792327097920,-5286159770781782374800
%N A319360 Expansion of e.g.f. (1 + x)*exp(log(1 + x)^2/2).
%C A319360 Inverse Stirling transform of A000085.
%H A319360 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A319360 a(n) = Sum_{k=0..n} Stirling1(n,k)*A000085(k).
%p A319360 seq(n!*coeff(series((1 + x)*exp(log(1 + x)^2/2),x=0,24),x,n),n=0..23); # _Paolo P. Lava_, Jan 09 2019
%t A319360 nmax = 23; CoefficientList[Series[(1 + x) Exp[Log[1 + x]^2/2], {x, 0, nmax}], x] Range[0, nmax]!
%t A319360 Table[Sum[StirlingS1[n, k] HypergeometricU[-k/2, 1/2, -1/2]/(-1/2)^(k/2), {k, 0, n}], {n, 0, 23}]
%Y A319360 Cf. A000085, A004211.
%K A319360 sign
%O A319360 0,5
%A A319360 _Ilya Gutkovskiy_, Sep 17 2018