This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319368 #11 Feb 01 2025 23:17:52 %S A319368 1,0,1,0,0,1,0,0,1,1,0,0,1,0,1,0,0,1,2,1,1,0,0,1,0,1,0,1,0,0,1,2,3,2, %T A319368 1,1,0,0,1,0,3,0,2,0,1,0,0,1,3,3,4,3,2,1,1,0,0,1,0,2,0,2,0,1,0,1,0,0, %U A319368 1,4,10,12,13,11,7,4,1,1,0,0,1,0,3,0,4,0,3,0,1,0,1 %N A319368 Triangle read by rows: T(n,k) is the number of simple connected vertex transitive graphs with n nodes and valency k, (0 <= k < n). %H A319368 Andrew Howroyd, <a href="/A319368/b319368.txt">Table of n, a(n) for n = 1..496</a> %H A319368 B. D. McKay and G. F. Royle, <a href="/A006799/a006799.pdf">The transitive graphs with at most 26 vertices</a>, Ars Combin. 30 (1990), 161-176. (Annotated scanned copy) %H A319368 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/trans/">Transitive Graphs</a> %H A319368 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Vertex-TransitiveGraph.html">Vertex-Transitive Graph</a>. %F A319368 T(n,k) = Sum_{d|n} moebius(n/d) * A319367(d,k). %e A319368 Triangle begins: %e A319368 1; %e A319368 0, 1; %e A319368 0, 0, 1; %e A319368 0, 0, 1, 1; %e A319368 0, 0, 1, 0, 1; %e A319368 0, 0, 1, 2, 1, 1; %e A319368 0, 0, 1, 0, 1, 0, 1; %e A319368 0, 0, 1, 2, 3, 2, 1, 1; %e A319368 0, 0, 1, 0, 3, 0, 2, 0, 1; %e A319368 0, 0, 1, 3, 3, 4, 3, 2, 1, 1; %e A319368 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1; %e A319368 0, 0, 1, 4, 10, 12, 13, 11, 7, 4, 1, 1; %e A319368 0, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1; %e A319368 0, 0, 1, 3, 5, 6, 8, 9, 6, 6, 3, 2, 1, 1; %e A319368 0, 0, 1, 0, 7, 0, 12, 0, 12, 0, 8, 0, 3, 0, 1; %e A319368 0, 0, 1, 4, 13, 25, 39, 47, 48, 40, 27, 16, 7, 3, 1, 1; %e A319368 0, 0, 1, 0, 4, 0, 7, 0, 10, 0, 7, 0, 4, 0, 1, 0, 1; %e A319368 0, 0, 1, 5, 12, 23, 36, 45, 53, 54, 45, 38, 24, 16, 7, 4, 1, 1; %e A319368 ... %Y A319368 Row sums are A006800. %Y A319368 Cf. A319367. %K A319368 nonn,tabl %O A319368 1,19 %A A319368 _Andrew Howroyd_, Sep 17 2018