This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319376 #24 Jan 22 2021 20:26:44 %S A319376 1,1,1,2,6,4,5,30,51,26,12,146,474,576,236,33,719,3950,8572,8060,2752, %T A319376 90,3590,31464,108416,175380,134136,39208,261,18283,245916,1262732, %U A319376 3124650,4014348,2584568,660032,766,94648,1908858,14047288,49885320,95715728,101799712,56555904,12818912 %N A319376 Triangle read by rows: T(n,k) is the number of lone-child-avoiding rooted trees with n leaves of exactly k colors. %C A319376 Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences. %H A319376 Andrew Howroyd, <a href="/A319376/b319376.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %F A319376 T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319254(n,i). %F A319376 Sum_{k=1..n} k * T(n,k) = A326396(n). - _Alois P. Heinz_, Sep 11 2019 %e A319376 Triangle begins: %e A319376 1; %e A319376 1, 1; %e A319376 2, 6, 4; %e A319376 5, 30, 51, 26; %e A319376 12, 146, 474, 576, 236; %e A319376 33, 719, 3950, 8572, 8060, 2752; %e A319376 90, 3590, 31464, 108416, 175380, 134136, 39208; %e A319376 261, 18283, 245916, 1262732, 3124650, 4014348, 2584568, 660032; %e A319376 ... %e A319376 From _Gus Wiseman_, Dec 31 2020: (Start) %e A319376 The 12 trees counted by row n = 3: %e A319376 (111) (112) (123) %e A319376 (1(11)) (122) (1(23)) %e A319376 (1(12)) (2(13)) %e A319376 (1(22)) (3(12)) %e A319376 (2(11)) %e A319376 (2(12)) %e A319376 (End) %p A319376 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A319376 add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i))) %p A319376 end: %p A319376 A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)): %p A319376 T:= (n, k)-> add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1): %p A319376 seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Sep 18 2018 %t A319376 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i j, i - 1, k], {j, 0, n/i}]]]; %t A319376 A[n_, k_] := If[n < 2, n k, b[n, n - 1, k]]; %t A319376 T[n_, k_] := Sum[(-1)^(k - i)*Binomial[k, i]*A[n, i], {i, 1, k}]; %t A319376 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 24 2019, after _Alois P. Heinz_ *) %t A319376 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A319376 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A319376 mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m]; %t A319376 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A319376 Table[Sum[Length[Union[mtot[s]]],{s,Select[allnorm[n],Length[Union[#]]==k&]}],{n,0,5},{k,0,n}] (* _Gus Wiseman_, Dec 31 2020 *) %o A319376 (PARI) \\ here R(n,k) is k-th column of A319254. %o A319376 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A319376 R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v} %o A319376 M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))} %o A319376 {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))} %Y A319376 Columns k=1..2 are A000669, A319377. %Y A319376 Main diagonal is A000311. %Y A319376 Row sums are A316651. %Y A319376 Cf. A141610, A242249, A255517, A256064, A256068, A319254, A319541, A326396. %Y A319376 The unlabeled version, counting inequivalent leaf-colorings of lone-child-avoiding rooted trees, is A330465. %Y A319376 Lone-child-avoiding rooted trees are counted by A001678 (shifted left once). %Y A319376 Labeled lone-child-avoiding rooted trees are counted by A060356. %Y A319376 Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636. %Y A319376 Cf. A000014, A000081, A000169, A005804, A206429, A330951. %K A319376 nonn,tabl %O A319376 1,4 %A A319376 _Andrew Howroyd_, Sep 17 2018