A319380 Number of plane trees with n nodes where the sequence of branches directly under any given node is a chain of distinct multisets.
1, 1, 1, 2, 3, 5, 9, 17, 30, 53, 94, 169, 303, 543, 968, 1728, 3080, 5491, 9776, 17415, 31008
Offset: 1
Examples
The a(8) = 17 locally identity chain trees: (((((((o))))))) (((((o(o)))))) (((o(o(o))))) (o(o(o(o)))) ((((o((o)))))) ((o((o(o))))) (o(o)(o(o))) (((o(((o)))))) ((o(o((o))))) ((o((((o)))))) (((o)(o(o)))) (o(((((o)))))) (o(((o(o))))) (o((o((o))))) (o(o(((o))))) ((o)(o((o)))) (((o))(o(o)))
Links
- Gus Wiseman, The a(12) = 169 identity chain trees.
Crossrefs
Programs
-
Mathematica
submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; idchnplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[idchnplane/@c],And[UnsameQ@@#,And@@submultisetQ@@@Partition[#,2,1]]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[idchnplane[n]],{n,10}]