A319382 Binomial coefficients binomial(m,k) for 2 <= k <= m/2 in sorted order.
6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 120, 120, 126, 136, 153, 165, 171, 190, 210, 210, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816, 820, 861, 903, 924
Offset: 1
Keywords
Examples
The first three terms are binomial(4,2) = 6, binomial(5,2) = 10, binomial(6,2) = 15.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^3: # to get terms <= N Res:= NULL: for n from 2 while n*(n-1)/2 <= N do for k from 2 to n/2 do v:= binomial(n,k); if v > N then break fi; Res:= Res,v od od: sort([Res]);
-
Mathematica
M = 10^3; Reap[For[n = 2, n(n-1)/2 <= M, n++, For[k = 2, k <= n/2, k++, v = Binomial[n, k]; If[v > N, Break[]]; Sow[v]]]][[2, 1]] // Sort (* Jean-François Alcover, Apr 27 2019, from Maple *)
Comments