This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319386 #22 Jun 06 2021 11:06:18 %S A319386 35,55,77,95,115,119,143,155,161,187,203,209,215,221,235,247,253,287, %T A319386 295,299,319,323,329,335,355,371,377,391,395,403,407,413,415,437,473, %U A319386 493,497,515,517,527,533,535,551,559,581,583,589,611,623,629,635,649,655,667,689,695,697,707,713,731 %N A319386 Semiprimes k = pq with primes p < q such that p-1 does not divide q-1. %C A319386 The "anti-Carmichael semiprimes" defined: semiprimes k such that lpf(k)-1 does not divide k-1; then also gpf(k)-1 does not divide k-1. %C A319386 All the terms are odd and indivisible by 3. %C A319386 If k is in the sequence, then gcd(k,b^k-b)=1 for some integer b. %C A319386 These numbers are probably all semiprimes in A121707. %H A319386 Robert Israel, <a href="/A319386/b319386.txt">Table of n, a(n) for n = 1..10000</a> %e A319386 35 = 5*7 is a term since 5-1 does not divide 7-1. %e A319386 35 is a term since lpf(35)-1 = 5-1 does not divide 35-1. %p A319386 N:= 1000: # for terms <= N %p A319386 P:= select(isprime,{seq(i,i=5..N/5,2)}): %p A319386 S:= {}: %p A319386 for p in P do %p A319386 Qs:= select(q -> q > p and q <= N/p and (q-1 mod (p-1) <> 0), P); %p A319386 S:= S union map(`*`,Qs,p); %p A319386 od: %p A319386 sort(convert(S,list)); # _Robert Israel_, Apr 14 2020 %t A319386 spndQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2 && Length[ fi]==2&&Mod[fi[[2]]-1,fi[[1]]-1]!=0]; Select[Range[800],spndQ] (* _Harvey P. Dale_, Jun 06 2021 *) %o A319386 (PARI) isok(n) = {if ((bigomega(n) == 2) && (omega(n) == 2), my(p = factor(n)[1, 1], q = factor(n)[2, 1]); (q-1) % (p-1) != 0;);} \\ _Michel Marcus_, Sep 18 2018 %o A319386 (PARI) list(lim)=my(v=List(),s=sqrtint(lim\=1)); forprime(q=7,lim\5, forprime(p=5,min(min(q-2,s),lim\q), if((q-1)%(p-1), listput(v,p*q)))); Set(v) \\ _Charles R Greathouse IV_, Apr 14 2020 %Y A319386 Subsequence of A046388. %Y A319386 Complement of A162730 w.r.t. A006881. %Y A319386 Cf. A001358, A121707. %K A319386 nonn %O A319386 1,1 %A A319386 _Thomas Ordowski_, Sep 18 2018