This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319390 #30 Nov 13 2023 08:44:24 %S A319390 1,2,3,6,8,13,16,23,27,36,41,52,58,71,78,93,101,118,127,146,156,177, %T A319390 188,211,223,248,261,288,302,331,346,377,393,426,443,478,496,533,552, %U A319390 591,611,652,673,716,738,783,806,853,877,926,951,1002 %N A319390 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=2, a(2)=3, a(3)=6, a(4)=8. %C A319390 The bisections A104249(n) = 1, 3, 8, ... and A143689(n+1) = 2, 6, 13, 23, ... are in the following hexagonal spiral: %C A319390 29--28--28--27--27 %C A319390 / \ %C A319390 29 17--17--16--16 26 %C A319390 / / \ \ %C A319390 30 18 9---8---8 15 26 %C A319390 / / / \ \ \ %C A319390 30 18 9 3---3 7 15 25 %C A319390 / / / / \ \ \ \ %C A319390 31 19 10 4 1 2 7 14 25 %C A319390 / / / / / / / / %C A319390 19 10 4 1---2 6 14 24 %C A319390 \ \ \ / / / %C A319390 20 11 5---5---6 13 24 %C A319390 \ \ / / %C A319390 20 11--12--12--13 23 %C A319390 \ / %C A319390 21--21--22--22--23 %C A319390 . %C A319390 a(n) mod 9 = A140265(n) mod 9. %H A319390 Colin Barker, <a href="/A319390/b319390.txt">Table of n, a(n) for n = 0..1000</a> %H A319390 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A319390 a(2n) = (3*n^2 + n + 2)/2. a(2n+1) = (3*n^2 + 5*n + 4)/2. %F A319390 a(-n) = a(n). %F A319390 a(n) = a(n-1) + A026741(n). %F A319390 G.f.: (1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2). - _Colin Barker_, Jun 05 2019 %F A319390 a(n) = 1 + A001318(n). - _Peter Bala_, Feb 04 2021 %F A319390 E.g.f.: ((8 + 7*x + 3*x^2)*cosh(x) + (9 + 5*x + 3*x^2)*sinh(x))/8. - _Stefano Spezia_, Feb 05 2021 %t A319390 LinearRecurrence[{1,2,-2,-1,1},{1,2,3,6,8},100] (* _Paolo Xausa_, Nov 13 2023 *) %o A319390 (PARI) Vec((1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ _Colin Barker_, Jun 05 2019 %Y A319390 Cf. A001318, A104249, A143689, A004526, A140265, A026741. %K A319390 nonn,easy %O A319390 0,2 %A A319390 _Paul Curtz_, Sep 18 2018