This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319394 #31 Dec 17 2020 15:00:57 %S A319394 1,0,1,0,1,1,0,1,1,1,0,0,2,1,1,0,1,1,2,1,1,0,0,2,2,2,1,1,0,0,1,3,2,2, %T A319394 1,1,0,1,1,2,4,2,2,1,1,0,0,1,3,3,4,2,2,1,1,0,0,2,2,4,4,4,2,2,1,1,0,0, %U A319394 1,3,4,5,4,4,2,2,1,1,0,0,0,3,5,5,6,4,4,2,2,1,1 %N A319394 Number T(n,k) of partitions of n into exactly k positive Fibonacci numbers; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A319394 T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k <= n. T(n,k) = 0 for k > n. %H A319394 Alois P. Heinz, <a href="/A319394/b319394.txt">Rows n = 0..200, flattened</a> %F A319394 T(n,k) = [x^n y^k] 1/Product_{j>=2} (1-y*x^A000045(j)). %F A319394 Sum_{k=1..n} k * T(n,k) = A281689(n). %F A319394 T(A000045(n),n) = A319503(n). %e A319394 T(14,3) = 2: 851, 833. %e A319394 T(14,4) = 5: 8321, 8222, 5531, 5522, 5333. %e A319394 T(14,5) = 6: 83111, 82211, 55211, 53321, 53222, 33332. %e A319394 T(14,6) = 8: 821111, 551111, 533111, 532211, 522221, 333311, 333221, 332222. %e A319394 T(14,7) = 7: 8111111, 5321111, 5222111, 3332111, 3322211, 3222221, 2222222. %e A319394 T(14,8) = 6: 53111111, 52211111, 33311111, 33221111, 32222111, 22222211. %e A319394 Triangle T(n,k) begins: %e A319394 1; %e A319394 0, 1; %e A319394 0, 1, 1; %e A319394 0, 1, 1, 1; %e A319394 0, 0, 2, 1, 1; %e A319394 0, 1, 1, 2, 1, 1; %e A319394 0, 0, 2, 2, 2, 1, 1; %e A319394 0, 0, 1, 3, 2, 2, 1, 1; %e A319394 0, 1, 1, 2, 4, 2, 2, 1, 1; %e A319394 0, 0, 1, 3, 3, 4, 2, 2, 1, 1; %e A319394 0, 0, 2, 2, 4, 4, 4, 2, 2, 1, 1; %e A319394 0, 0, 1, 3, 4, 5, 4, 4, 2, 2, 1, 1; %e A319394 0, 0, 0, 3, 5, 5, 6, 4, 4, 2, 2, 1, 1; %e A319394 0, 1, 1, 2, 4, 7, 6, 6, 4, 4, 2, 2, 1, 1; %e A319394 0, 0, 1, 2, 5, 6, 8, 7, 6, 4, 4, 2, 2, 1, 1; %e A319394 ... %p A319394 h:= proc(n) option remember; `if`(n<1, 0, `if`((t-> %p A319394 issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1))) %p A319394 end: %p A319394 b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, %p A319394 b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i))))) %p A319394 end: %p A319394 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))): %p A319394 seq(T(n), n=0..20); %t A319394 T[n_, k_] := SeriesCoefficient[1/Product[(1 - y x^Fibonacci[j]) + O[x]^(n+1) // Normal, {j, 2, n+1}], {x, 0, n}, {y, 0, k}]; %t A319394 Table[T[n, k], {n, 0, 40}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 28 2020 *) %t A319394 h[n_] := h[n] = If[n < 1, 0, If[Function[t, IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4]][5 n^2], n, h[n - 1]]]; %t A319394 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]]; %t A319394 T[n_, k_] := b[n, h[n], k] - b[n, h[n], k - 1]; %t A319394 Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *) %Y A319394 Columns k=0-10 give: A000007, A010056 (for n>0), A319395, A319396, A319397, A319398, A319399, A319400, A319401, A319402, A319403. %Y A319394 Row sums give A003107. %Y A319394 T(2n,n) gives A136343. %Y A319394 Cf. A000045, A281689, A319503. %K A319394 nonn,tabl %O A319394 0,13 %A A319394 _Alois P. Heinz_, Sep 18 2018