A319416 Cuts-resistance of n: number of applications of Lernormand's "raboter" map needed to transform the binary expansion of n to the empty string.
1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 4, 4, 4, 3, 3, 3, 4, 3, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2
Offset: 0
Examples
n: repeatedly applying the map / number of steps = a(n) 0: 0 -> . / 1 1: 1 -> . / 1 2: 10 -> . / 1 3: 11 -> 1 -> . / 2 4: 100 -> 0 -> . / 2 5: 101 -> . / 1 6: 110 -> 1 -> . / 2 7: 111 -> 11 -> 1 -> . / 3 8: 1000 -> 00 -> 0 -> . / 3 9: 1001 -> 0 -> . / 2 10: 1010 -> . / 1 11: 1011 -> 1 -> . / 2 12: 1100 -> 10 -> . / 2 ...
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..16384
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003.
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
Crossrefs
Programs
-
Mathematica
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; Table[degdep[IntegerDigits[n,2]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
a(n) = my (b=binary(n), w=#b); for (k=1, oo, my (ww=0); for (i=2, w, if (b[i-1]==b[i], b[ww++]=b[i])); if (ww==0, return (k), w=ww)) \\ Rémy Sigrist, Sep 23 2018
Extensions
More terms from Rémy Sigrist, Sep 23 2018
Comments