This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319421 #20 Dec 05 2019 17:39:44 %S A319421 1,1,1,1,2,1,1,4,2,1,1,6,6,2,1,1,10,11,7,2,1,1,14,24,14,8,2,1,1,22,42, %T A319421 35,16,9,2,1,1,30,81,68,45,18,10,2,1,1,46,138,149,89,55,20,11,2,1,1, %U A319421 62,250,282,216,110,66,22,12,2,1,1,94,419,577,422,285,132,78,24,13,2,1 %N A319421 Triangle read by rows: T(n,k) (1 <= k <= n) = one-half of the number of binary vectors of length n and cuts-resistance k. %C A319421 Cuts-resistance is defined in A319416. %C A319421 This triangle summarizes the data shown in A319420. %C A319421 Conjecture (Sloane): Sum_{i = 1..n} i * T(n,i) = A189391(n). %H A319421 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. See page 4. %H A319421 N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, <a href="https://vimeo.com/314786942">Part I</a>, <a href="https://vimeo.com/314790822">Part 2</a>, <a href="https://oeis.org/A320487/a320487.pdf">Slides.</a> (Mentions this sequence) %F A319421 T(n,k) = A329860(n,k)/2. - _Gus Wiseman_, Nov 25 2019 %e A319421 Triangle begins: %e A319421 1 %e A319421 1 1 %e A319421 1 2 1 %e A319421 1 4 2 1 %e A319421 1 6 6 2 1 %e A319421 1 10 11 7 2 1 %e A319421 1 14 24 14 8 2 1 %e A319421 1 22 42 35 16 9 2 1 %e A319421 1 30 81 68 45 18 10 2 1 %e A319421 1 46 138 149 89 55 20 11 2 1 %e A319421 1 62 250 282 216 110 66 22 12 2 1 %e A319421 1 94 419 577 422 285 132 78 24 13 2 1 %e A319421 Lenormand gives first 15 rows. %e A319421 For example, the "1,2,1" row here refers to the 8 vectors of length 3. There are 2 vectors of cuts-resistance 1, namely 010 and 101 (see A319416), 4 vectors of cuts-resistance 2 (100,011,001,110), and 2 of cuts-resistance 3 (000 and 111). Halving these counts we get 1,2,1 %t A319421 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A319421 Table[Length[Select[Tuples[{0,1},n],First[#]==1&°dep[#]==k&]],{n,8},{k,n}] (* _Gus Wiseman_, Nov 25 2019 *) %Y A319421 Row sums are A000079. %Y A319421 Column k = 2 appears to be A027383. %Y A319421 The version for runs-resistance is A319411 or A329767. %Y A319421 The version for compositions is A329861. %Y A319421 The cuts-resistance of the binary expansion of n is A319416(n). %Y A319421 Cf. A000975, A164707, A189391, A261983, A318921, A318928, A319420, A329738, A329860, A329865. %K A319421 nonn,tabl %O A319421 1,5 %A A319421 _N. J. A. Sloane_, Sep 23 2018