cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319431 The first differences (A319430) of the tribonacci representation numbers (A003726 or A278038) consists of runs of 1's separated by the terms of the present sequence.

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 19, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 37, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 19, 2, 3, 2, 5, 2, 3, 74, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 19, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 37, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 147, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 19, 2, 3, 2, 5, 2
Offset: 1

Views

Author

N. J. A. Sloane, Sep 30 2018

Keywords

Comments

The runs of 1's in A319430 have lengths that apparently are given by A275925 (with a slight change at the start). The present sequence shows the terms greater than 1.
Let b = "2,3,2", c = "2,3,2,5,2,3", d = "2,3,2,5,2". The sequence appears to consist of a word over the alphabet {b,c,d} interspersed with the sequence 10, 19, 10, 37, 10, 19, 74, 10, 19, 10, 37, 10, 147, 10, 19, 10, 37, 10, ...:
c, 10, d, 19, c, 10, b, 37, c, 10, d, 19, c, 74, c, 10, d, 19, c, 10, b, 37, c, 10, d, 147, c, 10, d, 19, c, 10, b, 37, c, 10, d, 19, c, 74, ...
The interspersed sequence 10, 19, 10, 37, 10, 19, 74, ... appears to have the same kind of structure.
It would be nice to have a recurrence of some kind that produces this sequence.

Examples

			0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, ... = A003726 (trib. repres. numbers)
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, ... = A319430 (differences)
2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 5, 2, 19, 2, 3, 2, 5, 2, 3, 10, 2, 3, 2, 37, 2, ... (omit 1's, present sequence)
6, 1, 5, 1, 6, 1, 3, 1, 6, 1, 5, 1, 6, 1, 6, 1, 5, 1, 6, 1, 3, 1, 6, 1, 5, 1, ... = run lengths in differences
6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, 5, 6, 3, 6, 5, 6, 6, 5, 6, 3, 6, 5, 6, ... = A275925 truncated (BISECTION of run lengths)
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[Differences@ Select[Range[0, 1200], SequenceCount[IntegerDigits[#, 2], {1, 1, 1}] == 0 &] , 1] (* Michael De Vlieger, Dec 23 2019 *)
Showing 1-1 of 1 results.