This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A319436 #15 Nov 16 2021 03:45:20 %S A319436 1,1,2,3,6,10,20,35,68,122,234,426,808,1484,2798,5167,9700,17974, %T A319436 33656,62498,116826,217236,405646,754938,1408736,2623188,4892848, %U A319436 9114036,16995110,31664136,59034488,110004243,205068892,382156686,712363344,1327600346,2474618434 %N A319436 Number of palindromic plane trees with n nodes. %C A319436 A rooted plane tree is palindromic if the sequence of branches directly under any given node is a palindrome. %H A319436 Andrew Howroyd, <a href="/A319436/b319436.txt">Table of n, a(n) for n = 1..500</a> %H A319436 Gus Wiseman, <a href="/A319436/a319436.png">The a(8) = 35 palindromic plane trees.</a> %H A319436 Gus Wiseman, <a href="/A319436/a319436_1.png">The a(11) = 234 palindromic plane trees.</a> %F A319436 a(n) ~ c * d^n, where d = 1.86383559155190653688720443906758855085492625375... and c = 0.24457511051198663873739022949952908293770055... - _Vaclav Kotesovec_, Nov 16 2021 %e A319436 The a(7) = 20 palindromic plane trees: %e A319436 ((((((o)))))) (((((oo))))) ((((ooo)))) (((oooo))) ((ooooo)) (oooooo) %e A319436 ((((o)(o)))) (((o(o)o))) ((o(oo)o)) (o(ooo)o) %e A319436 (((o))((o))) ((o((o))o)) (o((oo))o) (oo(o)oo) %e A319436 (((o)o(o))) ((oo)(oo)) %e A319436 (o(((o)))o) ((o)oo(o)) %e A319436 ((o)(o)(o)) (o(o)(o)o) %t A319436 panplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[panplane/@c],#==Reverse[#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A319436 Table[Length[panplane[n]],{n,10}] %o A319436 (PARI) PAL(p)={(1+p)/subst(1-p, x, x^2)} %o A319436 seq(n)={my(p=O(1));for(i=1, n, p=PAL(x*p)); Vec(p)} \\ _Andrew Howroyd_, Sep 19 2018 %Y A319436 Cf. A000108, A000670, A001003, A005043, A008965, A025065, A032128, A118376, A242414, A317085, A317086, A317087, A319122, A319437. %K A319436 nonn %O A319436 1,3 %A A319436 _Gus Wiseman_, Sep 18 2018