cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319438 a(n) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 + 13^14 - ... + (up to n).

This page as a plain text file.
%I A319438 #13 Oct 05 2018 08:48:41
%S A319438 1,1,-2,-80,-75,15545,15538,-5749256,-5749247,3481035145,3481035134,
%T A319438 -3134947341576,-3134947341563,3934241438357713,3934241438357698,
%U A319438 -6564474114274532912,-6564474114274532895,14056519977953450458097,14056519977953450458078
%N A319438 a(n) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 + 13^14 - ... + (up to n).
%C A319438 An alternating version of A318868.
%H A319438 Colin Barker, <a href="/A319438/b319438.txt">Table of n, a(n) for n = 1..350</a>
%F A319438 a(n) = n*(n mod 2)*(-1)^floor(n/2) + Sum_{i=1..floor(n/2)} (2*i - 1)^(2*i)*(-1)^(i - 1).
%e A319438    a(1) = 1;
%e A319438    a(2) = 1^2 = 1;
%e A319438    a(3) = 1^2 - 3 = -2;
%e A319438    a(4) = 1^2 - 3^4 = -80;
%e A319438    a(5) = 1^2 - 3^4 + 5 = -75;
%e A319438    a(6) = 1^2 - 3^4 + 5^6 = 15545;
%e A319438    a(7) = 1^2 - 3^4 + 5^6 - 7 = 15538;
%e A319438    a(8) = 1^2 - 3^4 + 5^6 - 7^8 = -5749256;
%e A319438    a(9) = 1^2 - 3^4 + 5^6 - 7^8 + 9 = -5749247;
%e A319438   a(10) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 = 3481035145;
%e A319438   a(11) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11 = 3481035134;
%e A319438   a(12) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 = -3134947341576; etc .
%t A319438 Table[n*Mod[n, 2]*(-1)^(Floor[n/2]) + Sum[(2*i - 1)^(2*i)*(-1)^(i - 1), {i, Floor[n/2]}], {n, 30}]
%Y A319438 Cf. A093361, A228958, A305189, A318868.
%K A319438 sign,easy
%O A319438 1,3
%A A319438 _Wesley Ivan Hurt_, Sep 18 2018