A319442 Number of divisors of n over the Eisenstein integers.
1, 2, 3, 3, 2, 6, 4, 4, 5, 4, 2, 9, 4, 8, 6, 5, 2, 10, 4, 6, 12, 4, 2, 12, 3, 8, 7, 12, 2, 12, 4, 6, 6, 4, 8, 15, 4, 8, 12, 8, 2, 24, 4, 6, 10, 4, 2, 15, 9, 6, 6, 12, 2, 14, 4, 16, 12, 4, 2, 18, 4, 8, 20, 7, 8, 12, 4, 6, 6, 16, 2, 20, 4, 8, 9, 12, 8, 24, 4, 10
Offset: 1
Examples
Let w = (1 + sqrt(3)*i)/2, w' = (1 - sqrt(3)*i)/2. Divisors of 7 over the Eisenstein integers are 1, 2 + w, 2 + w', 7 and their association, so a(7) = 4. Divisors of 9 over the Eisenstein integers are 1, 1 + w, 3, 3 + 3w, 9 and their association, so a(9) = 5.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Wikipedia, Eisenstein integer
Crossrefs
Equivalent of arithmetic functions in the ring of Eisenstein integers (the corresponding functions in the ring of integers are in the parentheses): this sequence ("d", A000005), A319449 ("sigma", A000203), A319445 ("phi", A000010), A319446 ("psi", A002322), A319443 ("omega", A001221), A319444 ("Omega", A001222), A319448 ("mu", A008683).
Equivalent in the ring of Gaussian integers: A062327.
Programs
-
Maple
A319442 := proc(n) local t, f, j, e, m; t := 1: f := ifactors(n)[2]; for j from 1 to nops(f) do e := f[j, 2] + 1; m := f[j, 1] mod 3; if m = 0 then 2*e-1 elif m = 1 then e^2 else e fi; t := t * % od; t end: seq(A319442(n), n=1..80); # Peter Luschny, Oct 03 2018
-
Mathematica
f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; Array[eisNumDiv, 100] (* Amiram Eldar, Feb 10 2020 *)
-
PARI
A319442(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==3, r*=(2*e+1)); if(p%3==1, r*=(e+1)^2); if(p%3==2, r*=(e+1)); ); return(r); }
Formula
Multiplicative with a(3^e) = 2*e + 1, a(p^e) = (e + 1)^2 if p == 1 (mod 3) and e + 1 if p == 2 (mod 3).
Comments